Proofs to three corollaries.
Corollary 3.1. In every triangle the following inequality holds

$$
\begin{equation*}
\frac{R}{r} \geq \frac{\sqrt{3}}{3}\left(\frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C}\right) \tag{3.1}
\end{equation*}
$$

with equality holding if and only if the triangle is equilateral.
Solution by Arkady Alt, San Jose,California, USA.
Let s be semiperimeter of $\triangle A B C$. We have
$\frac{R}{r} \geq \frac{\sqrt{3}}{3}\left(\frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C}\right) \Leftrightarrow \frac{\sqrt{3}}{2 r} \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \Leftrightarrow$
$\frac{\sqrt{3}}{2 r} \geq \frac{a b+b c+c a}{a b c} \Leftrightarrow \frac{\sqrt{3}}{2 r} \geq \frac{a b+b c+c a}{4 R r s} \Leftrightarrow R \sqrt{3} \geq \frac{a b+b c+c a}{a+b+c}$.
Since $3(a b+b c+c a) \leq(a+b+c)^{2}$ and $a+b+c \leq 3 \sqrt{3} R$ then
$\frac{a b+b c+c a}{a+b+c} \leq \frac{(a+b+c)^{2}}{3(a+b+c)}=\frac{a+b+c}{3} \leq \frac{3 \sqrt{3} R}{3}=R \sqrt{3}$.
Equality in $3(a b+b c+c a) \leq(a+b+c)^{2}$ and $a+b+c \leq 3 \sqrt{3} R$ occurs iff $a=b=c$.

Remark.

$$
\begin{aligned}
& \frac{\sqrt{3}}{2 r} \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \Leftrightarrow \frac{2 \sqrt{3} F}{2 r} \geq \frac{2 F}{a}+\frac{2 F}{b}+\frac{2 F}{c} \Leftrightarrow \\
& \frac{2 \sqrt{3} r s}{2 r} \geq h_{a}+h_{b}+h_{c} \Leftrightarrow h_{a}+h_{b}+h_{c} \leq s \sqrt{3} . \star
\end{aligned}
$$

Corollary 3.4. In every triangle we have

$$
\begin{equation*}
\frac{R}{r} \geq \frac{2}{9}(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \tag{3.4}
\end{equation*}
$$

with equality holding if and only if the triangle is equilateral.
Solution by Arkady Alt, San Jose,California, USA.
Since by (3.1) $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq \frac{\sqrt{3}}{2 r}$ and $a+b+c \leq 3 \sqrt{3} R$ then $\frac{2}{9}(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \leq \frac{2}{9}(a+b+c) \cdot \frac{\sqrt{3}}{2 r} \leq$ $\frac{2}{9} \cdot 3 \sqrt{3} R \cdot \frac{\sqrt{3}}{2 r}=\frac{R}{r}$.
Obviously that equlity conditions is the same as in (3.1).
Corollary 3.5. In every triangle we have
(3.5) $\frac{R}{r} \geq \frac{1}{3}\left(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\right)$
with equality holding if and only if the triangle is equilateral.
Solution by Arkady Alt, San Jose,California, USA.
Let s be semiperimeter of $\triangle A B C$. Since $a b+b c+c a=s^{2}+4 R r+r^{2}$, $a b c=4$ Rrs then $\frac{R}{r} \geq \frac{1}{3} \sum \frac{b+c}{a} \Leftrightarrow \frac{R}{r}+1 \geq \frac{1}{3} \sum\left(\frac{b+c}{a}+1\right) \Leftrightarrow$ $\frac{R+r}{r} \geq \frac{(a+b+c)(a b+b c+c a)}{3 a b c} \Leftrightarrow \frac{R+r}{r} \geq \frac{2 s\left(s^{2}+4 R r+r^{2}\right)}{3 \cdot 4 R r s} \Leftrightarrow$ $6 R(R+r) \geq s^{2}+4 R r+r^{2} \Leftrightarrow s^{2} \leq 6 R^{2}+2 R r-r^{2}$.
Noting that $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ (Gerretsen's Inequality) and $2 r \leq R$ (Euler's Inequality) we obtain $\left(6 R^{2}+2 R r-r^{2}\right)-s^{2} \geq$
$\left(6 R^{2}+2 R r-r^{2}\right)-\left(4 R^{2}+4 R r+3 r^{2}\right)=2(R-2 r)(R+r) \geq 0$.
As cosequence of equality conditions in Gerretsen's and Euler's inequalities we obtain that equality holds iff the triangle is equilateral.

